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Abstract. We numerically explore texture (resolved by the second-moment
of the orientational distribution) and shear banding of nematic polymers in
shear cells, allowing for one-dimensional morphology in the gap between par-
allel plates. We solve the coupled Navier-Stokes and Doi-Marrucci-Greco ori-
entation tensor model, considering both confined orientation in the plane of
shear and full orientation tensor degrees of freedom, and both primary flow
and vorticity (in the full tensor model) components. This formulation makes
contact with a large literature on analytical and numerical (cf. the review [41])
as well as experimental (cf. the review [45]) studies of nematic polymer texture
and flow feedback. Here we focus on remarkable sensitivity of texture & shear
band phenomena to plate anchoring conditions on the orientational distribu-
tion. We first explore steady in-plane flow-nematic states at low Peclet (Pe)
and Ericksen (Er) numbers, where asymptotic analysis provides exact texture
scaling properties [18, 6]. We illustrate that in-plane steady states co-exist
with, and are unstable to, out-of-plane steady states, yet the structures and
their scaling properties are not dramatically different. Non-Newtonian shear
bands arise through orientational stresses. They are explored first for steady
states, where we show the strength and gap location of shear bands can be
tuned with anchoring conditions. Next, unsteady flow-texture transitions as-
sociated with the Ericksen number cascade are explored. We show the critical
Er of the steady-to-unsteady transition, and qualitative features of the space-
time attractor, are again strongly dependent on wall anchoring conditions.
Other simulations highlight unsteady flow-nematic structures over 3 decades
of the Ericksen number, comparisons of shear banding and texture features
for in-plane and out-of-plane models, and vorticity generation in out-of-plane
attractors.

1. Introduction. Sheared nematic polymers experience a proliferation of texture,
in the form of spatial gradients of the orientational distribution of the rod-shaped
macromolecules. Cladis & Torza [5] and Manneville [35] described the analogous
liquid crystal behavior as director turbulence, while Berry [1] used the term tur-
bidity in his nematic polymer experiments on pristine, nearly homogeneous initial
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708 H. ZHOU, M.G. FOREST AND Q. WANG

samples. The present study is motivated by applications to high performance ma-
terials; in particular, we are interested in textures generated by thin film or mold
processing of nematic polymers and rigid rod nano-composites. The rigid rod inclu-
sions are added to enhance properties, yet the processing-induced variability in the
orientational distribution strongly influences conductive and mechanical properties
[50, 22, 51, 52, 53, 54]. In particular, film processing of nematic polymers leads to
anisotropy (characterized by the local orientational distribution) and heterogeneity
(characterized by gradients of the orientational distribution), which are then real-
ized in all properties. The local (monodomain) orientational properties of sheared
nematic polymers are now quite well understood; texture generation is in a primi-
tive state by comparison, and in particular the lengthscales of heterogeneity remain
very poorly characterized.

Furthermore, non-Newtonian hydrodynamic feedback due to orientational stress
leads to shear banding and significant increases in effective viscosity, thereby limiting
processability. It is apparently difficult to do velocimetry in nematic polymer flows,
and modeling therefore plays an important role in establishing the correlations
between texture and flow lengthscales. A remarkable feature predicted by the model
simulations reported here is the contrast in shear bands which can form, each with
the same mean shear rate across the gap, simply by changing the plate anchoring
condition! We find shear bands which have plate layers that move essentially like
plug flow with the plates, mediated by a strong shear layer at the center of the gap.
Other shear bands have strong shear layers at each plate, and a nearly stationary
interior layer. These flow-texture features are the targets of the numerical studies
presented, with particular attention to variability in attractors due to anchoring
conditions and to steady-unsteady transitions in the Er cascade.

An experimental review of shear behavior and texture formation in nematic poly-
mers is provided by [45], whereas modeling studies on second-moment Landau-
deGennes models are reviewed by [41]. The lengthscales of texture, and whether
the basic texture modes are extended structures (e.g., span the gap width) or re-
side in wall boundary layers or defects, remain open questions. What aspects of
processing (flow type, flow rate, confinement conditions) generate local and nonlo-
cal texture modes? Information of this type has been inferred from steady state
scaling arguments, including seminal work by de Gennes [7], Marrucci and Greco

[36, 38] (which led to the Marrucci scaling prediction of Er−
1

2 ), Carlsson [3, 4]
who argues that wall anchoring effects have a local penetration depth, Larson and
Mead [29, 30, 31] (whose experiments and theoretical modeling indicate scaling of
Er−p, with 1

4 ≤ p ≤ 1), all based on the Leslie-Ericksen-Frank small molecule liq-
uid crystal theory. Asymptotic steady scaling analysis of the Doi-Marrucci-Greco
second-moment tensor model of liquid crystalling polymers, in the slow flow (low
De) and strongly elastic (low Er) limit [18], predicts two types of texture modes:
plate boundary layers which obey the Marrucci scaling (dominated by order parame-
ter and director distortions); and nonlocal texture modes (dominated by distortions
in the principal axes of orientation) which span the shear gap and obey an Er−1

scaling. Furthermore, the strength of the boundary layers is highly sensitive to wall
anchoring conditions in this limit, which suggests a critical dependence of order
parameter-induced texture on anchoring conditions. Whether this texture remains
localized at the plates, as Carlsson deduces from small molecule models, remains
an open question for the strong nonlinear interactions in the Doi-Marrucci-Greco
model employed here. We provide clear evidence of propagation of wall conditions
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throughout the shear gap; in particular, we observe macroscopic bulk flow variability
due simply to anchoring conditions.

Numerical confirmation of the asymptotic texture analysis in [18] shows the onset
of nonlinear flow feedback, with preliminary evidence that shear band generation
is sensitive to anchoring conditions on the orientation tensor. The present study
continues these observations with numerical studies at higher Ericksen numbers and
with variable in-plane plate anchoring conditions. Our simulations make contact
with the predictions of Kupferman et al. [28] of flow generation phenomena; we
extend their model two-dimensional (planar) liquid study to three dimensions in
orientational space, retaining 1d variation in physical space along the flow-gradient
axis spanning the plates. Our confined in-plane simulations are analogous to their 2-
dimensional liquid model. The study of out-of-plane anchoring conditions is clearly
worth studying, but deferred so we can organize predictions of this multi-parameter
study.

There is ample evidence from longwave monodomain studies of several closure
models [12], and their comparison with resolved kinetic simulations [19, 20], that
a combined mesoscopic closure and kinetic equation approach is prudent. Mov-
ing from the longwave limit to structure simulations, the Smoluchowski kinetic
solver has been extended to coupled Smoluchowski-Navier-Stokes simulations of
one-dimensional structure formation [55, 21]. The Smoluchowski solvers extend
the 5 degrees of freedom of the orientation tensor to 65 degrees of freedom of
the orientational probability distribution function through a high order spherical
harmonic expansion; the number 65 is not magical, rather it is necessary to get
converged results. This results in 65 coupled nonlinear reaction-diffusion equations
for the orientational distribution; in the coupled Navier-Stokes system, the orienta-
tion equations are solved together with the incompressible hydrodynamic equations
for the primary velocity and vorticity. Of relevance to the present paper, only
limited kinetic parameter runs have been carried out due to extremely high compu-
tational costs and numerical limitations of the Smoluchowski-Navier-Stokes model;
lengthscales clearly scale with some inverse power of the Ericksen number, but the
simulations are too time consuming to deduce scaling exponents. In [55], imposed
kinematics and confined in-plane orientational distributions significantly reduce the
coupled Smoluchowski-Navier-Stokes system, so that some parameter studies are
feasible. Texture phase diagrams reveal parameter domains in Peclet and Ericksen
numbers where steady and unsteady attractors prevail, with phase transitions sep-
arating the various regions. More limited parameter ranges are explored with full
flow coupling and out-of-plane distribution functions [21].

All of these kinetic simulations coupled to Navier-Stokes suggest that qualita-
tive features are well captured by the Doi-Marrucci-Greco tensor model coupled
to Navier-Stokes. The present study therefore serves as a coarse-grained approx-
imation and predictor [25] of flow-texture phenomena that can subsequently be
confirmed with the high-resolution Smoluchowski-Navier-Stokes codes.

The phenomena of interest for this paper include: texture attractors and asso-
ciated nonlinear shear band structures; texture phase transitions, between steady
and unsteady and between in-plane and out-of plane, consistent with seminal stud-
ies of Rey and Tsuji [46, 47]; and a determination of which control parameters
trigger the sensitivity or transitions. The new feature amplified here is the sensitive

role of plate anchoring conditions, in modifying flow feedback profiles and texture
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transitions. Our approach is to begin from parameter regimes where we have an-
alytical and numerical benchmarks, namely the low De and Er regime [18], and
then to use numerical continuation and systematically document the emergence of
new orientational and flow phenomena.

The most resolved Doi-Marrucci-Greco tensor model simulations are the two
physical space dimension results from Sgalari, Leal, Feng, Klein, Garcia-Cervera,
and Ceniceros [42, 26, 27]. Their studies presume strong anchoring along the vor-
ticity direction, aimed at modeling the roll cell instability [30]. In this paper, we
explore plate anchoring at a spectrum of different angles in the flow plane, transverse
to the vorticity axis of these 2d studies. The stability of the phenomena reported in
this paper to higher space dimensional perturbations, and the study of anchoring
conditions between the shear plane and vorticity axis, are topics for the future.

We begin in a parameter regime where asymptotic analysis gives explicit structure
formulas and their scaling properties. This is the dual limit of a low Peclet number
(sufficiently slow flow) and a low Ericksen number (sufficiently strong elasticity),
either with equal bend-splay-twist elasticity constants [18] or with two independent
elasticity constants [6]. This slow plate, elasticity-dominated regime characterizes
nematic liquids whose distortional elasticity potential is strong enough to arrest
all shear-induced tumbling in the interior of the shear cell. Physically, this limit
is not realizable except by cooling the liquid, where shear cell experiments may
not be possible. In any case, it is a limit that gives important information with
which to guide parameter continuation from benchmarked algorithms and controlled
lengthscales of flow and orientation.

Analytically, we have derived steady molecular orientational distributions with
relatively mild spatial gradients and very weak non-Newtonian flow feedback. The
analysis, however, is only tractable when orientational distributions are restricted
to in-plane major directors, which confines the peak orientation axis to lie in the
plane of the flow and flow gradient. We are thus led to first numerically explore the
persistence and stability of these asymptotic solutions as the Ericksen and Peclet
numbers are raised out of the asymptotic range of validity, but then to also explore
behavior inaccessible to analysis: potential co-existence of out-of-plane steady at-
tractors, stability of all steady states, and the possibility of unsteady transitions
where steady states no longer exist.

2. Model formulation and the orientation tensor representation. We con-
sider planar shear flow between two plates located at y = ±h, in Cartesian coor-
dinates (x, y, z), moving with corresponding velocity v = (±v0, 0, 0), respectively.
Variations in the direction of flow (x) and primary vorticity direction (z), and
transport in the vertical (y) direction are suppressed. Figure 1 is a generic par-
allel plate figure showing a nonlinear shear flow and a spatially varying orientation
tensor ellipsoid at several locations between the plates.

The Doi-Hess kinetic theory is developed to study the dynamics of LCP molecules
in terms of a probability distribution function. The full orientation tensor theory
(Doi-Marrucci-Greco model) is developed after the kinetic theory for the distribu-
tion function is projected onto a second-moment description using closure rules.
A major ingredient in this tensor theory is the second-moment tensor Q which
describes the mesoscopic orientational distribution of rod-like LCPs:
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Q =< mm > −
I

3
, (1)

where the angular brackets indicate an average with respect to the probability
distribution function, m is a unit vector representing the direction of a random
rodlike molecule, and I is the identity tensor.

The orientation tensor is related to the second moment tensor M =< mm > of
the probability distribution function of the rod-like molecules by Q = M − 1

3I. As
such, M is symmetric with non-negative eigenvalues 0 ≤ d3 ≤ d2 ≤ d1 ≤ 1, and
trace 1 (d1 + d2 + d3 = 1). The orthonormal frame of eigenvectors ni with semi-
axes di determines an ellipsoid at each location and time; spheres correspond to
isotropic distributions (d1 = d2 = d3 = 1

3 ) with all directions of orientation equally
probable, spheroids (with two equal axes) depict uniaxial distributions (d1 6= d2 =
d3 are characteristic of stable nematic equilibria) where the peak (most probable)
orientation axis n1 is called the major director, and full triaxial ellipsoids correspond
to biaxial orientation. Each ellipsoid represents a mesophase point, on the order
of a cubic micron, containing approximately millions of spheroids. The orientation
tensor Q is the basis for micron-scale light scattering measurements of primary axes
(directors) and degrees of molecular alignment (birefringence) and normal and shear
stress measurements.

The spectral representation of Q,

Q = s(y, t)(n1n1 −
I

3
) + β(y, t)(n2n2 −

I

3
), (2)

recasts the orientation tensor directly in terms of measurable quantities, the meso-
scopic directors defined above, and the order parameters, s = d1 − d2, β = d2 − d3,
which immediately convey degrees of anisotropy of the orientational distribution of
the rod ensemble. Uniaxial phases correspond to s 6= 0 and β = 0, s = 0 and β 6= 0,
and s = β, whereas biaxial phases correspond to s 6= 0 and β 6= 0. Whenever s = 0
and β = 0, the major director is not uniquely defined, and such orientational states
are called defects. Otherwise, e.g., s 6= 0 and β = 0, a major director is uniquely
defined as the most probable axis of rod orientation.

We note for later consideration the geometric form of confined in-plane orien-

tational distributions. One director n3 is fixed along the vorticity (z) axis, so the
remaining directors n1, n2 are confined to the (x, y) plane, and thus parametrized
by a single angle ψ(y, t),

n1 = (cosψ, sinψ, 0),n2 = (− sinψ, cosψ, 0). (3)

Model equations

We nondimensionalize the DMG model using the length scale h (gap height) and
a time scale t0 to be specified below. The dimensionless flow and stress variables
become:

ṽ =
t0
h

v, x̃ =
1

h
x, t̃ =

t

t0
, τ̃ =

h2

f0
τ, p̃ =

h2

f0
p, (4)
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where f0 = ρh4/t20 is an experimentally imposed inertial force. The following seven
dimensionless parameters arise:

De =
1

6D0
rt0

, Re =
ρh2

t0η
, α =

3ckT t20
h2ρ

,

Er =
8h2

ND0
rt0l

2
, µi =

3ckT ζit0
h2ρ

, i = 1, 2, 3;

(5)

α measures the strength of elastic energy relative to kinetic energy; De is the
Deborah number for the molecular relaxation rate normalized by shear rate; Re is
the solvent Reynolds number; Er is the Ericksen number which measures short-
range nematic potential strength relative to distortional elasticity strength; µi, i =
1, 2, 3 are three nematic Reynolds numbers, arising from the Miesowicz viscosities
relative to plate inertia. We drop the tilde˜on all variables; all figures correspond
to normalized variables and length, time scales.

The balance of linear momentum, stress constitutive equation, continuity equa-
tion, and the equation for the orientation tensor in the nondimensional form yield
[18]

dv
dt = ∇ · (−pI + τ),

τ =
(

2
Re + µ3

)

D + aαF (Q)

+ aα
3Er

{

∆Q : Q(Q + I

3 ) − 1
2 (∆QQ + Q∆Q) − 1

3∆Q
}

+ α
3Er

{

1
2 (Q∆Q− ∆QQ) − 1

4 (∇Q : ∇Q−∇∇Q : Q)
}

+µ1

{

(Q +
I

3
)D + D(Q +

I

3
)

}

+ µ2D : Q

(

Q +
I

3

)

,

∇ · v = 0,

d
dtQ = ΩQ − QΩ + a [DQ + QD] + 2a

3 D − 2aD : Q(Q + I

3 )

−
1

De

{

F (Q) +
1

3Er

[

∆Q : Q(Q +
I

3
)

−
1

2
(∆QQ + Q∆Q) −

1

3
∆Q

]}

,

(6)

where the rate-of-strain tensor D, the vorticity tensor Ω and the short-range
excluded volume effect F (Q) are given by

D = (∇v + ∇vT )/2, Ω = (∇v −∇vT )/2,

F (Q) = (1 −N/3)Q−NQ2 +NQ : Q(Q + I/3).
(7)

In the above equations I is the unit tensor; d/dt is the material derivative; a is a
dimensionless parameter which depends on the molecular aspect ratio r of spheroidal

molecules a = r2
−1

r2+1 ; N is a dimensionless concentration of nematic polymers, which

controls the strength of the mesoscopic approximation, F (Q), of the gradient of the
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Maier-Saupe short-range intermolecular potential. We note that the geometry and
1-dimensional assumption kill the convective nonlinearity in the flow equations.
Boundary Conditions

The boundary conditions for the scaled axial velocity vx are

vx(y = ±1) = ±Pe, (8)

where Pe is the Peclet number representing the ratio of the time scale set by the
moving plate speed and the characteristic time scale.

We assume homogeneous mesophase anchoring at the plates, given by a stable
nematic equilibrium,

Q|y=±1 = s0(nn − I

3 ),

s0 = 1
4 (1 + 3

√

1 − 8
3N ),

(9)

where s0 is the uniaxial order parameter specified by the nematic concentration
N > 8

3 , and n is the equilibrium uniaxial director, assumed to lie in the shear plane
(flow-flow gradient plane) at some experimentally dictated anchoring angle ψ0 with
respect to the flow direction,

n = (cosψ0, sinψ0, 0). (10)

The anchoring angle will appear prominently in the results below; plate prepara-
tions yield tangential (ψ0 = 0), homeotropic (ψ0 = π

2 ), or tilted (0 < ψ0 < π
2 )

anchoring. These restricted plate anchoring conditions are relevant for exploring
in-plane structures, where we have analytical solutions to benchmark the codes.
We show that even with in-plane anchoring conditions, mid-gap molecular ensem-
bles escape the shearing plane if the longwave monodomain dynamics is unstable to
out-of-plane orientation. Thus, we gain predictive value for texture simulations from
the monodomain phase diagrams and bifurcation diagrams which identify unstable
in-plane steady states and limit cycles [12].

Numerical Methods

We solve the system of PDEs (6) numerically using a second-order finite-difference
scheme to approximate the spatial derivatives together with an adaptive fourth or-
der Runge-Kutta-Fehlberg time integration method. More precisely, we use hybrid
discretization where the orientation tensor and the shear velocity are discretized on
staggered meshes. In order to get more resolutions near the channel walls, we map
a uniform mesh on a computational coordinate θ (θ ∈ [−1, 1]) to a non-uniform
mesh on the physical y-coordinate (y ∈ [−1, 1]):

y(θ) =
tanh(δ · θ/2)

tanh(δ/2)
(11)

where the parameter δ controls the distribution of grid points in the [-1,1] interval.
Our numerical method is similar to the one used in [28].

In this work we assume the velocity is of the form v = (vx(y), 0, vz(y)) which
automatically satisfies the incompressible condition.

Since we are interested in the steady state solutions, we also solve the corre-
sponding ODEs of (6) by first discretizing the spatial derivatives and then solving
the resulting system with Newton’s method.

In the simulations presented in this paper, we choose the characteristic time scale
as proportional to the LCP relaxation time, i.e., De = 1. We also fix Re = 1000,
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a = 0.8, µ1 = 2.3867× 10−4, µ2 = 3.1607 × 10−3, µ3 = 3.5 × 10−3, and α = 2. We
fix an equilibrium nematic concentration N = 6 and consider structure formation
versus 3 control parameters: the plate anchoring angle of the equilibrium director,
the Ericksen number Er and the Peclet number Pe. For N = 6, the equilibrium
order parameter s0 = 0.809, which is the baseline for how well ordered the rod
ensemble is throughout the gap. We obtain the steady state solutions by solving
the ODE system. When we solve the PDEs, we sometimes use the steady state
solutions plus random perturbations as initial conditions and sometimes just start
with arbitrary initial conditions. We pay close attention to “director distortions”
associated with variations in the principle axes of orientation, versus “molecular
elasticity” associated with order parameter gradients which reflect focusing (increase
in the order parameter s) versus defocusing (decrease in s) in the orientational
distribution. Furthermore, we look for “non-Newtonian flow feedback” in the form
of shear bands. Finally, we study correlations between these three features of steady
and unsteady attractors.

A note on imposed symmetries: The primary flow profile is constrained by the
plate conditions to a mean shear rate equal to the bulk shear rate imposed by the
moving plates. At any time, in particular in steady state, the mean flow profile is a
simple linear shear, and all flow profiles are odd functions of y. It follows by anal-
ysis of the in-plane flow-orientation tensor equations that the in-plane director and
order parameters are even functions of y. These symmetries are broken experimen-
tally by slight mismatches in plate speeds and anchoring conditions, but from the
point of view of modeling predictions, this choice of symmetric boundary conditions
essentially cuts in half the functional degrees of freedom in the flow and orientation
tensor. Since a primary purpose of this study is to understand development of new
structures and lengthscales, and what material and experimental conditions trigger
them, we choose for this study to maintain these symmetries.

We recall that closed-form steady structures are derived in [18] for this model,
and in [6] for a more general distortional elasticity potential, both analyses valid in
the dual limit of slow flow (low Pe) and high distortional elasticity (low Er). These
exact formulas provide guidance for an otherwise daunting, multi-parameter, numer-
ical investigation. Recall the parameter space includes: processing conditions (plate
speeds (Pe) which model processing throughput controls, molecular anchoring con-
ditions which model mechanical or chemical wall preparations, plate separation
distance which models confinement effects); material properties (nematic polymer
concentration, molecular aspect ratio, distortional elasticity); and, timescales on
which the nematic polymer liquid is exposed to the flow processing. The analysis
has proven tractable so far only for restricted in-plane orientation tensors (with
Qxz = Qyz = 0).

In the low Pe, low Er regime, we have predictive control over steady, in-plane,

flow-nematic properties:

1. the type of LCP structure “modes”: a non-uniform permeation mode that
spans the entire gap, dominated by nematic or director-dominated distortions,
and boundary layer modes localized at the plates which include molecular
elasticity or strong order parameter distortions;

2. the scaling properties of each LCP structure mode, with Er−1 mean length
scale in permeation modes and Er−1/2 length scales in the plate layers; and,

3. the remarkable sensitivity of the amplitudes of order parameter distortions,
and thereby the boundary layer structure, to plate anchoring conditions;
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4. the velocity profile at leading order is a simple linear shear profile, consistent
with a typical assumption in many early studies of nematic polymer structure
generation, yet indications that plate anchoring conditions may control the
strength and convexity of nonlinear shear band formation.

We begin with numerical results at the parameter boundary where asymptotic
analysis provides exact formulas for steady flow-orientation morphology. We focus
this section first on confined in-plane steady structure phenomena as we paramet-
rically violate the asymptotic assumptions, and then address out-of-plane steady
states. The highlights of each simulation are italicized.

3. The low Ericksen number cascade of steady states for Pe = 0.5. Figure

2 provides the baseline for confined in-plane steady structures, with Pe = 0.5
and Er = 1. The asymptotic scaling laws [18] accurately predict phenomena seen
here; steady structures are given for five different plate anchoring conditions. We
summarize the salient features:

• Nematic elasticity. The peak axis of alignment (the ”Leslie angle” ψ of the
major director of Q), top left panel, agrees with the asymptotic prediction
of a parabolic distortion spanning the plates. The major director rotates
counterclockwise from the lower plate to the mid-gap, then unwinds back to
the top plate. The “degree of nematic distortion”, measured by the total
variation of the Leslie angle, < |∂ψ/∂y| >= |ψ(0)−ψ(±1)|, is proportional to
the anchoring angle ψ0.

• Molecular elasticity. The order parameters remain close to their equilibrium
boundary values (s = s0 and β = 0), indicating very weak molecular elasticity.
Nonetheless, one observes a clear anchoring dependence on the amplitudes

of order parameter variations, with the strongest response for homeotropic
anchoring (ψ0 = π/2).

• Flow-feedback. The primary flow (lower right panel) is almost identical to
pure linear shear for tangential anchoring, but then acquires weak, twin shear

bands, one on each half of the gap, triggered only by anchoring variations.

Figure 3 retains low plate speeds, Pe = 0.5, while raising Er by one order of
magnitude, from 1 to 10, to reflect slight softening of the strong elastic constant.
The salient features are:

• Nematic elasticity. Increased rotation of the major director from plate to
plate (top left panel), as expected for two reasons: the softer elastic constant
offers less resistance to elastic distortions, and asymptotic analysis predicts
Er−1 scaling of director distortions.

• Molecular elasticity. Localized distortions in the order parameters appear to
correlate with strong interior shear layers and also with plate layers even if
the local flow is plug-like.

• Flow-feedback phenomena. The strength and concavity (explained below) of
the twin shear bands are strongly modified by the plate anchoring condition.
We amplify this anchoring-sensitive steady flow phenomenon:

– For tangential anchoring, strong localized shear layers form at each plate,
while the majority of the shear gap is nearly at rest (a slow nearly plug
flow layer)!

– Normal anchoring leads to a “flow inversion”: approximate plug flow in
large layers from each plate to the interior, with a strong shear layer in
the mid-gap!
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V=V0 ,  Q=Q0

V=−V0 ,  Q=Q0

Directors

Y

X

Figure 1. A schematic of the parallel plate experiment, with no
slip velocity conditions and strong anchoring (tangential in the fig-
ure) at the plates. The flow profile depicted is simple shear, with a
key focus in simulations to follow on the non-Newtonian flow feed-
back due to the rigid-rod macromolecular ensemble. The ellipsoids
which distort and rotate between the plates depict key features of
the orientation tensor Q at a micron-scale resolution. The eigen-
vectors of Q determine the principal axes, with the major director
associated with the peak axis of orientation, and differences of the
eigenvalues determine the anisotropy in the orientational distribu-
tion, which is reflected in the aspect ratio of the ellipsoid.
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Figure 2. The steady ODE solutions with 5 different anchoring
conditions. Here Pe = 0.5, Er = 1. The anchoring angle ψ0 (in
radian measure) for each case is: ψ0 = 0 (solid line), π/16 (dotted
line), π/8 (dashdot line), π/4 (dashed line), π/2 (++ line). Here
s0 = 0.8090.
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Figure 3. The steady ODE solutions with 5 different anchoring
conditions. Here Pe = 0.5, Er = 10. The anchoring angle ψ0 for
each case is: ψ0 = 0 (solid line), π/16 (dotted line), π/8 (dashdot
line), π/4 (dashed line), π/2 (++ line).

– As the anchoring angle varies, the flow profile smoothly interpolates be-
tween these two extremes. The width of the plate plug layers scales with
the anchoring angle, while plate shear layers grow in intensity as the
anchoring angle becomes tangent to the plates. Thus, the bulk steady

nonlinear flow profile is tunable by wall anchoring conditions!
• Correlations between flow and orientation tensor structure.

– Strong shear layers appear always to generate molecular elasticity. In
these steady states, order parameter variations arise where there is a high
local Peclet number (∂vx/∂y). This means that flow regions of high shear
will create full tensor distortions.

– Order parameter distortions also can arise in regions of a nearly zero
local Peclet number, a new feature not hinted from the asymptotic scaling
analysis. In the normal anchoring steady state profiles, order parameter
variations arise in the near-wall plug layer; they appear to be the first
sign of a long-range full tensor structure associated with non-parabolic
director scaling (discussed next).

– The correlation between nematic (director) distortions and flow is more
subtle. From asymptotic analysis at low Er ∗Pe, we know that parabolic
director profiles proportional to Er(y2 − 1) coincide with simple linear
shear with strength Pe. In asymptotic structures, the order parameter
variations are weaker, O(Pe2). For all but the normal anchoring condi-
tion of Figure 3, this parabolic structure prevails. Note however that the
director profile for normal anchoring is clearly non-parabolic, with almost
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Figure 4. The steady ODE solutions with 7 different anchoring
conditions. Here Pe = 0.5, Er = 15. The anchoring angle ψ0 for
each case is: ψ0 = 0 (solid line), π/16 (dotted line), π/8 (dashdot
line), π/4 (dashed line), π/2 (++ line).

linear variation in the plug layers at the plates, and a stronger than qua-
dratic scaling (perhaps (y2 − 1)2) in the mid-gap where the strong shear
layer is.
This flow-tensor steady state suggests that the location of the shear layer
relative to the plates plays a major role in director distortions. Namely,
when shear layers occur in the interior, then the director is free to distort
and is only inhibited by the strength (Er−1) of the distortional elasticity
potential. However, when shear layers occur near the plates, the strong
anchoring condition suppresses director tumbling for some distance away
from the plates; this forces the steady state balance to be achieved pre-
dominantly by order parameter distortions.

• Secondary shear band generation in the Er cascade for tangential anchoring

In Figure 4 we raise Er from 10 to 15, retaining Pe = 0.5, and observe persistent
in-plane steady states for all ψ0 between 0 and π/2, highlighted by:

• Nematic elasticity. Comparing Figures 3 & 4, director distortions increase
consistent with the asymptotic scaling Er−1, remaining qualitatively similar.

• Molecular elasticity. Once again, order parameter gradients arise in strong
shear layers.

• Flow feedback. We observe a secondary shear band generation phenomenon for
tangential anchoring, and evidence of the onset of a second shear band with
normal anchoring. All flow structures develop stronger nonlinear features, but
the tilted anchoring flow profiles develop stronger and more localized shear
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Figure 5. The steady ODE solutions with 2 different anchoring
conditions. Here Pe = 0.5, Er = 20. The anchoring angle ψ0 for
each case is: ψ0 = 0 (solid line), π/2 (dashed line).

layers at the plates for Er = 15, with a large interior stationary (plug) layer
where the local shear rate is quite small.

We amplify the shear band comparison between the strongest shear layer struc-
tures (tangential and normal anchoring) at Er = 10 and 15.

• For ψ0 = π/2, a second interior shear band has formed at the mid-gap, re-

placing the previous sharp linear interior layer at Er = 10. This localized
shear band generation is similar to the full shear gap phenomenon at Er = 1
(Figure 2).

• We infer a threshold criterion for linear shear layer strength, above which a
nonlinear shear band is generated within the spatial scale of the former linear
shear layer. The shear band is accompanied by a parabolic director angle
distortion and by order parameter fluctuations, each localized to the spatial
extent of the new shear band.

• For tangential anchoring, the flow profile is more dramatic. The strong shear
layers at each plate undergo a sharp transition: the number of shear bands
jumps from one to two, and each of the four strong linear shear layers are
now half as strong as the previous two layers. The Er = 10 full flow profile

has essentially been duplicated at Er = 15 in each half of the gap. The large
interior stationary layer is gone, replaced by twin plug flow layers in each half
of the gap.

• The order parameters exhibit stronger variations in the double shear band
structure, with orientational defocusing near the plates. Thus, lengthscales of
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Figure 6. The steady ODE solution with 2 different anchoring
conditions. Here Pe = 0.5. Tilted anchoring ψ0 = π/16: Er = 30
(solid red line), Er = 20 (dashed blue line); Normal anchoring
ψ0 = π/2: Er = 30 (solid black line). Steady state solutions
corresponding to anchoring conditions ψ0 = π/8 and π/4 exist
(not plotted here). For ψ0 = 0 and Er = 30, both the PDE codes
and ODE codes indicate that there is no steady state solution. The
solid straight line is given by ψ − ψ0 = −π.

molecular elasticity appear to correlate with the local normalized shear rate
(Deborah number).

Secondary shear band generation was explored in detail in model 2-dimensional
liquids by Kupferman et al. [28], using a similar Doi-Marrucci-Greco model. The
2d in space, 2x2 orientation tensor model also restricts to 1d structure between the
plates; their 2x2 tensor orientation model is analogous to our in-plane restriction
of the 3x3 orientation tensor. They restricted their simulations to parallel wall
anchoring, which always generates strong shear layers at the plates (their “burst”
phenomenon), so comparisons are restricted to this anchoring condition and the
associated Ericksen number cascade phenomena. Kupferman et al. observe strong
correlations between shear band generation and the winding number of the pla-
nar Leslie angle ψ(y, t), which are not preserved by starting from a 3d model and
projecting onto 1d in space and in-plane orientation. In the Kupferman et al. sim-
ulations, there is essentially a 1:1 correlation between the winding number of the
major director (or, nematic distortional bands and lengthscales) and the number of
shear bands (or, the lengthscale of each shear band). The top left panel of Figure
4 shows the total variation in ψ still below π, yet shear band structure has already
appeared; indeed, shear banding behavior and transitions occur within a wind-
ing event of the major director, and appear to correlate with molecular elasticity



ANCHORING-INDUCED STRUCTURES 721

−3 −2 −1 0 1
−1

−0.5

0

0.5

1

y
ψ − ψ

0

−0.4 −0.2 0
−1

−0.5

0

0.5

1

y

s−s
0

−0.2 −0.1 0
−1

−0.5

0

0.5

1
y

β
−1 0 1

−1

−0.5

0

0.5

1

y

v
x

−0.04 0 0.04
−1

−0.5

0

0.5

1

y

v
z

Figure 7. The out-of-plane (solid line) and the in-plane (dashed
line) steady state solutions with normal anchoring condition where
Pe = 1 and Er = 10.

more than nematic (director) distortions. The viscous-elastic stress communication
and non-Newtonian flow feedback are partially captured by this 2d liquid analogy:
qualitative features of shear band generation, director spatial distortion scale that
decreases with increasing Er, and the steady-unsteady transition we come to below.
Yet, other key features are either not accurate (nematic elasticity-shear band cor-
relations) or inaccessible (instability to out of plane orientation, studied below). Of
course, both studies require stability analysis and simulation to higher dimensional
perturbations in space, which remain unaddressed here.

• Secondary shear band generation in the steady-state Er cascade for normal
anchoring

Next, we raise Er from 15 to 20 in Figure 5, holding Pe = 0.5. Tilted anchoring
steady states develop stronger plate shear layers, and increased biaxiality in the
orientational distribution, but flow and director features are similar. That is, the
flow field has not yet developed twin shear bands with tilted anchoring. We omit
these tilted anchoring solutions, deferring to a higher Er simulation presented below
(Figure 6), in order to contrast normal versus tangential anchoring at Er = 20.

• For tangential anchoring, the double shear band structure of Figure 4 persists,
with strengthening of the mid-gap shear layer, weakening of the plate shear
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Figure 8. The out-of-plane PDE solutions with tangential anchor-
ing condition where Pe = 0.5 and Er = 30.

layers, and the twin plug flow layers have accelerated toward the plate speed.
I.e., the double shear bands have strengthened with increased Er.

• For normal anchoring, the weakly nonlinear interior shear band of Figure 4
has amplified into a strong interior shear band, now consisting of a full gap,
twin shear band structure. The plate plug-flow layers of Figure 4 have been
compressed to nearly half-width.

• Twin shear band comparison between normal and tangential anchoring

Twin shear bands form for each anchoring condition, with 2 distinctions: (i)
they are delayed to higher Er for normal anchoring; and (ii) the shear bands are
remarkable distinct. The plug flow layers either start at the plates (with normal
anchoring) interlaced with strong interior shear layers and plug layers, or strong
shear layers emanate directly from the plates (with tangential anchoring). Plate

and interior layers switch between plug flow and strong shear layers, due solely to

switching of plate anchoring angle. This is a repeat of the observations in Figure 3
at Er = 10 with a single shear band structure. Thus, bulk flow properties appear
to consist of shear and plug layer components, whose strengths are picked by Pe,
Er values, but the gap location of the components can be switched by changing
between tangential and homeotropic anchoring.

• Correlations between director distortions and shear bands for tilted anchoring

We move now to tilted anchoring phenomena, which in asymptotic limits of low
Er and Pe consist of enhanced molecular elasticity in plate boundary layers [18, 6].

Figure 6 shows the single-to-double shear band transition for a fixed tilted
anchoring condition, ψ0 = π/16. The Er = 20 steady state solution in dashed blue
is a sharper version of the flow profile for tilted anchoring in Figure 4, Er = 15. For
Er = 30, the sharp gradient exceeds an apparent threshold condition, generating the
double shear band in red, which reproduces the tangential anchoring flow structure
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Figure 9. Eight snapshots of flow profiles across the gap corre-
sponding to Fig. 8.

at lower Er = 20. Thus, Er-induced shear banding transitions are delayed to higher

Er by tilted anchoring, and the relative locations in the gap of plug and shear layers

appear to be tunable by plate anchoring condition.

• Correlations between order parameter distortions and shear bands for parallel
and normal anchoring

Figure 6 further shows spatial correlations between shear bands and order param-
eter distortions. Observe the onset, at Er = 30 and normal anchoring, of significant
defocusing (lower s) of the orientational distribution and strong biaxiality (non-zero
β). This drop in the primary order parameter s is a precursor to defect generation
(s near 0) at high Er. Note also that the director distortion has exceeded one com-
plete rotation for the tilted anchoring condition, but not for normal anchoring, and
yet both in-plane steady states at Er = 30 have spawned twin shear bands. This
again shows the major director winding number is purely coincidental in generation

of secondary shear bands.
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Figure 10. The in-plane and out-of-plane PDE solutions for nor-
mal anchoring condition where Pe = 0.5.

4. Co-existence of out-of-plane steady structures. The asymptotic analysis
of the slow plate (low Pe) limit is only tractable for in-plane orientation tensors.
The above steady states have confirmed the asymptotic solutions and the scaling
behavior at low Pe and Er, and tracked the evolution of the flow and in-plane
orientation structures by numerical continuation well beyond the asymptotic regime
as Er is increased for Pe = 0.5. New structure features on new lengthscales have
been identified in the process, in particular shear band generation at some criticalEr
which is strongly dependent on the boundary anchoring condition; the strong shear
layers correlate with orientation order parameter fluctuations and thus focusing
and defocusing of the rod distribution function. Only at higher Er do we observe
significant departure from the parabolic director winding across the gap.

We now explore other steady structures for which explicit analysis has thus far
eluded us, namely nematic structures with out-of-plane orientational degrees of free-
dom, whose major director is free to roam out of the shear plane (flow-flow gradient
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Figure 11. Four snapshots of flow profiles across the gap corre-
sponding to Fig. 10. Top panel: Er = 100; Bottom panel: Er
= 1000. In-plane solutions are plotted in solid red lines whereas
out-of-plane solutions in dashed black lines.

plane). Below, we will further explore unsteady structures, which may either co-
exist with steady structures, or emerge as steady states fail to exist. We are guided
in our structure simulations by the longwave limit of homogeneous monodomains,
which applied to zero wavenumber dynamics. Recall from [12], at the nematic con-
centration (N = 6) imposed here, the low Pe bulk dynamics consists of in-plane
tumbling orbits and out-of-plane kayaking orbits, where the tumbling orbits are
unstable to kayaking attractors. Thus, any noisy out-of-plane perturbations across
the gap will seed out-of-plane degrees of freedom at any local gap height. Even
with distortional elasticity and spatial gradients across the plate gap, there is no
apparent mechanism to suppress this longwave instability and drive the full coupled
flow-nematic system back to in-plane steady states. The upshot of this argument
is that we expect there to be co-existence of steady states (as with monodomains)
and steady-unsteady transitions (as with monodomains), since those longwave bi-
furcations are fully at play in the partial differential equations explored here.

Numerical solutions for Pe = 1, Er = 10 with a normal and tilted anchoring
condition reveal that in-plane steady state solutions are stable, in fact the unique
attractor, for confined in-plane simulations. These steady states are unstable in the
out-of-plane system, and converge to a steady, out-of-plane flow-nematic structure
which is a global attractor. These two co-existing structures are shown in Figure

7. We highlight the key features:
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Figure 12. The steady ODE solutions with 5 different anchoring
conditions. Here Pe = 1, Er = 10. The anchoring angle ψ0 for
each case is: π/16 (dotted line), π/8 (dashdot line), π/4 (dashed
line), π/2 (++ line). For ψ0 = 0, both the PDE codes and ODE
codes indicate that there is no steady state solution.

• Nematic elasticity. There is no discernible difference in the in-plane major
director rotation across the gap. The out-of-plane attractor is kayaking (in
space!), so along with this rotation is a polar angle fluctuation.

• Molecular elasticity. The in-plane order parameter distortions are almost neg-
ligible, whereas the stable out-of-plane structure has a significant defocusing
of the orientational distribution in the center of the gap, along with strong
biaxiality.

• Flow feedback. The primary shear band structure is qualitatively unchanged
in the stable out-of-plane attractor, although clearly there is a softening of
the sharp shear layers. The vorticity generation is evident, most prominent
at the shear layers.

• Flow-nematic correlations. The director distortions do not have signatures
across the gap that correlate with other features. The in-plane solutions sup-
press any measurable spatial correlations. On the other hand, there are clear
correlations in the out-of-plane attractor between molecular elasticity, shear
bands, and vorticity generation.

5. Unsteady structure transitions and sensitivity to anchoring condi-

tions.

5.1. Anchoring-dependent loss of in-plane steady states. For Pe = 0.5,
Er = 30 and tangential anchoring, we fail to find steady states. Recall (Figure 6)
that other anchoring angles produce in-plane steady structures at Er = 30, and
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Figure 13. Unsteady out-of-plane simulation for parallel anchor-
ing with Pe = 1.0, Er = 10, and noisy initial data in vz, Qxz, Qyz.
The secondary vorticity and out-of-plane Q components quickly
saturate to zero (not shown), marking convergence to an in-plane,

spatio-temporal attractor. Top 4 panels: the in-plane Q tensor com-
ponents and primary velocity component. Bottom panel: Time
evolution of the in-plane Leslie angle ψ at the mid-plane.

tangential anchoring has steady states at Er = 20. In graphs not shown here,
the shear layers continue to steepen as Er increases between 20 and 30; rather
than spawn yet another pair of shear bands, a different transition emerges which
is not accessible by the in-plane steady code. We therefore turn to two possible

consequences of loss of in-plane steady state solutions: either an in-plane to out-
of-plane steady state transition, or a steady-to-unsteady transition (which could be
either in-plane or out-of-plane). All evidence thus far indicates that in-plane and
out-of-plane steady states co-exist (Figure 7), and that both states simultaneously
undergo an unsteady transition as either the Ericksen number or Peclet number
is raised. Furthermore, the critical Er and Pe of these transitions are strongly
dependent on the plate anchoring angle. We will not exhaust this 3 parameter
space in this paper, instead showing examples of these transition phenomena.

Figure 8 shows the space-time attractor from the PDE flow-structure simulation
with Er = 30, Pe = 0.5, and tangential anchoring, where the out-of-plane tensor
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Figure 14. The first/second normal stress differences (τ11 − τ22),
shear stress (τ12), velocity component vx, and orientation tensor
ellipsoids across the plate gap for 3 snapshots t = 320 (left column),
t = 325 (middle column), t = 330 (right column) of the spatio-
temporal “wagging structure attractor” of Fig. 13.

components Qxz and Qyz are clearly nonzero, and the vorticity likewise is nonzero.
Figure 9 gives 8 snapshots of the flow profiles of Figure 8. We find that the flow
profile fluctuates quite significantly in unsteady structures: the width of the plate
shear layers and the strength vary by factors of 2 or 3; the number of shear bands
jumps between 1 and 3; and the mid-gap is sometimes in strong shear and others
in nearly plug flow. Evidence of a non-monotone flow profile is evident in one of
the snapshots, a phenomenon seen by Sebastian Heidenreich in related studies and
in full kinetic flow-nematic simulations of Ruhai Zhou (private communications).
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Figure 15. Eight more snapshots of flow profiles across the gap
corresponding to Fig. 13.

These jet-like layers, which we find in more dramatic fashion below (Figure 15),
deserve further study.

5.2. Er cascade for Pe = 0.5 and normal anchoring. In Figure 10, we com-
pare both in-plane and out-of-plane unsteady solutions for normal anchoring con-
dition with Er = 100 and 1000, respectively. The in-plane (solid red) flow profiles
in the top row are analogous to the model 2d liquid results of Kupferman et al.
[28]. One observes the generation of shear bands which increase in number as Er
increases. To see the the evolution of shear band generation, Figure 11 provides 4
snapshots at each Ericksen number, for both in-plane and out-of-plane attractors.
The shear bands again fluctuate in number, strength and location across the gap.
The surface plots in Figure 10 indicate a dynamic process of shear band propaga-
tion, collisions, reformation, and eventual settling at long times into a time-periodic
structure. The vorticity evolution for the out-of-plane simulations, Row 3 of Figure
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10, shows fluctuations in vorticity which appear to have lower amplitudes at higher
Er.

The detailed snapshots in Figure 11 also reveal that confined in-plane simulations
predict an overestimate of shear layer strengths and of the number of shear bands
in the long-time behavior. The out-of-plane attractors have softened shear layers,
where small scale shear bands are basically smoothed out and replaced by larger
scale averaged structures. These simulations further show that the plate plug flow
layers associated with normal anchoring are much smaller than in steady structures
are lower Er. Thus, once the flow becomes unsteady, the bulk flow profile fluctuates
between a nearly linear bulk shear flow (t = 700) and a nonlinear shear flow with 4
shear bands across the gap (t = 300, 500).

5.3. Steady states and unsteady transitions at Pe = 1, Er = 10. Short
of a full attractor phase diagram versus (Er, Pe) and anchoring angle, we show
the analogous steady structures and unsteady transitions for Pe = 1 rather than
Pe = 0.5 of the previous Figures 2-11. In Figure 12, with Pe = 1, Er = 10, we
show the in-plane steady states for 4 anchoring conditions. (NOTE: The tangential
anchoring solution for Pe = 1 is not shown here, since it has already gone unsteady
at Er below 10, rather than above Er = 20 at Pe = 0.5.) Comparison of Figures 3
and Figure 12 shows the effects of doubling Pe on the tilted and normal anchoring
steady structures at Er = 10. The major director winds more in each half gap; the
order parameters are amplified for all anchoring angles, indicating greater focusing
and defocusing of the orientational distribution across the gap, and thus small
lengthscales of nematic and molecular elasticity; and the shear band profiles are
steeper for each tilted anchoring condition, the normal anchoring condition has
spawned another shear band, while the tangential anchoring condition has gone
through an unsteady transition.

The unsteady Er transition for Pe = 1 has therefore shifted below 10, whereas it
was above Er = 20 for Pe = 0.5. Our final figures highlight the unsteady attractor
for tangential anchoring at Er = 10, Pe = 1, Figure 13 and Figure 14 show an
unsteady in-plane attractor which results from the full out-of-plane unsteady code!
Thus, at different Pe, clearly the unsteady attractor transition is not simply from
an out-of-plane steady state to an out-of-plane unsteady state. We do not present
the steady out-of-plane structures versus Er at Pe = 1 for tangential anchoring, but
clearly there is evidence of the full tensor system having in-plane steady attractors.

This result is consistent with the monodomain bifurcation diagram in Forest and
Wang [12] which shows a critical plate speed (there, a Deborah number) at which the
tumbling monodomain limit cycle becomes stable in the full orientation tensor dy-
namics. Thus, bi-stable in-plane tumbling and out-of-plane kayaking monodomains
would suggest the possibility of bi-stable steady state structures. The full steady
state structure phase diagram will complete this story, which is beyond the present
paper. We remark that the non-dimensionalization in the present paper and [12] is
different, so a direct comparison requires some effort.

Some additional features of the unsteady attractor are shown in Figure 14 and
Figure 15. The first normal stress difference (Figure 14, Row 1) fluctuates about
zero across the gap, remaining in the negative range near the plates. This negative
first normal stress difference is the classical signature of the unsteady shear regime
of nematic polymers, and one of the key successes of the Doi theory applied to
monodomains. The shear stress (Figure 14, Row 2) varies in space and time, seem-
ingly tracking the times at which shear layers are the strongest (as expected). The
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unsteady flow profile (Figure 14, Row 3) shows an important feature: the near plate
flow profile is plug-like as opposed to the steady profiles for tangential anchoring
which all exhibit plate shear layers. Finally, the orientation tensor uniquely defines
a triaxial ellipsoid, which for in-plane tensors has major axis in the shear plane.
Figure 14, Row 4 shows 3 snapshots of the orientation tensor ellipsoid projected on
the shear plane. The nematic elasticity is sometimes almost negligible, but then
there are collective tumbling events across the gap which generate director distor-
tions. Note the ellipses near the plates have less eccentricity, signaling lower values
of the order parameters s, and therefore a defocusing of the orientational distribu-
tion. Finally, the 8 snapshots of the flow profile are shown in Figure 15, indicating
once again the variability in the bulk flow across the gap. The most dramatic pro-
file occurs at t = 400, showing an extreme illustration of non-monotone primary
velocity structure, with twin jet-like layers in either half of the shear gap. This
corresponds in the flow surface plot Figure 13 to the bulge visible at this time. We
strongly suspect that these 1d flow-nematic structures are unstable to 2d spatial
perturbations, which is a topic of present study in our group.

6. Concluding remarks. We have employed a mesoscopic Doi-Marrucci-Greco
model for the orientation tensor and the unsteady Stokes momentum balance to
study 1d heterogeneity of flowing nematic polymers in plane Couette cells. This
numerical continuation study has revealed several phenomena relevant to nematic
polymers materials: unsteady structure transitions may be activated by device
controls, molecular properties, and plate anchoring controls. Furthermore, a re-
markable shear band structure is revealed, marked by anchoring-tuned steady flow
profiles at low Er and Pe, replaced as either Er or Pe is increased by a transition
to unsteady flow-orientation response in steady operating conditions. The dynamic
flow profiles are remarkable in that they fluctuate at fixed material and experimen-
tal conditions in the strength, number, and location of shear bands through the
plate gap. These studies only expose the diversity of phenomena that are possible
in flow-nematic interactions. A more detailed phase diagram for these parameter
studies, and the extensions to higher space dimensions, are presently under study
in our research group.
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